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Stochastic Models and Radial Basis Function Interpola‘tors
Donald E. Myers

1 Introduction

There are many examples of stochastic formulations or solutions for problems that otherwise are.

treated as deterministic. Bras and Rodriguez-Iturbe,(1985) and de Marsily (1986) are good
examples of the treatment of stochastic equations in lieu of deterministic ones in order to
adequately incorporate heterogeneity in the subsurface and hence in the hydrogeologic parameters
appearing in the flow and transport equations. Stochastic methods are widely used in petroleum,
Yarus and Chambers (1994). There are examples more specific to Radial Basis Function
interpolators, see Matheron (1973, 1980-81), Wabha and Kimeldorf (1970), Liu et al (2002),
Weller et al (2002). ) '

Likewise there are multiple reasons for considering a stochastic formulation. These include (1)
additional or different insights into the problem arising from the stochastic model, (2) new results
not easily obtainable from the deterministic model, (3) simpler derivations of some results when
the stochastic formulation is used. But another important reason might be the difference between
“error” and “uncertainty”. Madych and Nelson (1988) give a bound on the point approximation
error but it is given in terms of the norm of the unknown function. In general the function being
interpolated will be unknown and hence the “errors” will be unknown, hence there is
‘uncertainty” which is often best described in statistical terms.

2 Positive Definiteness

Recall that the strict (conditional) positive definiteness is essential in the derivation and
application of the RBF interpolator for two reasons; (1) to determine the norm (or semi-norm) for
the interpolation space and (2) to ensure that the system of equations determining the coefficients
in the RBF interpolator has a unique solution. In the stochastic context, a positive definite
function is a covariance function for a second order stationary random function (a conditionally
positive definite function is a generalized covariance function for an intrinsic stationary random
function). Matheron (1973) gives a representation theorem for conditionally positive definite
functions (generalizing Bochner’s Theorem) based on results in Gelfand and Vilenkin (1964). In a
stochastic model rather than minimizing the norm, one minimizes the estimation variance (which
is computed in terms of the generalized covariance function).
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‘, ‘ 3 The Equivalence

In the notation of Madych and Nelson'(1988) the RBF interpolator is of the form

$(0) = X pjepm € h(x-X) + Yigamkox® 0y
where ‘

Z[/:] ..... nj C,' h(x—x,) + Zlal.‘im kax“ =V, i=1..,n (23)

Yt i =0; o <m (2b)

By simple linear algebra this is transformed into

$() = 2oty C (X) v, 1

where

2 iatm G () h(xi- %) + D cm Ko X, =h(x-x), i=1..n (2a%)

and

..... 11]q(x)xja =xu y Ia‘<m . (Zb,)
It is common to write C; (x) as simply C;. Note that the coefficient matrix is exactly the same in
both systems. The difference is that in the RBF formulation one solves the system once and
obtains a functional form that must be evaluated at each point, in the stochastic form the
coefficient matrix need be inverted only once but the right hand side changes with each point. In
the stochastic formulation the data, i.e., vi; i= I,...,n, is a non-random sample from one realization
of a random function V(x) with generalized covariance h(u). The system (2a’, 2b’) is obtained by
minimizing the variance of the error of estimation under the constraint of unbiasedness assuming
that the estimator is of the form given in (1'). This form is motivated by the multivariate gaussian
case where the conditional expectation is linear in the data. It is well known that-in general the
conditional expectation is the minimum variance unbiased estimator. Thus (1) is a linear
approximation to the conditional expectation. The minimized estimation variance is given by

o'ix) = 2/,‘71 ,,,,, i Ch(x-%) + Ziggcm Ko x® (3)

Note that the coefficients are not the same as in (1). This variance is not data dependent hence one
must be careful about interpreting it in the usual way, e.g., to compute confidence intervals.

In the alternative form, (1'), the estimated (interpolated) value is a weighted average of the data
values. It is easy to see that the degree to which this weighted average differs from a simple
unweighted average depends on the spatial “correlation”. That is, the extent to which the values at
close locations are more similar than the values at distant locations. The covariance function
explicitly quantifies this similarity (or lack of it). Eq(2") incorporates the similarity of the values at
the data locations as well as the similarity of the value at the location to be estimated with respect
to the separate data locations.

4 The Data

In the context of RBF the data are “numbers”, i.e., scalars and each is the value of the unknown
function at a single point. In the stochastic formulation the data may have other characteristics. In
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particular the data may in fact be the values of linear functionals applied to the unknown function.
Two in particular are of interest, the derivative and a spatial integral. Likewise rather than
“interpolating” values of the unknown function one may wish to estimate values of linear
functionals applied to the unknown function. The derivation of the RBF interpolator does not
provide an easy way to deal with either of these variations, in contrast it is rather easy in the
stochastic formulation. There are other possibilities for the data as well, e.g., the data might be
given in terms of inequalities or as probability distributions. The data might also be vector valued,
e.g., barometric pressure and wind speed. Again the stochastic formulation provides a logical
extension. This particular example is considered in Chauvet et al (1976)

5 Interpolation vs Smoothing v

The RBF interpolator is “exact” (also called “perfect™), i.e. s(x;) = v;, i = /,...,n. This seems to
imply that the there is no error in the data. If the data represent measurements or the results of
some form of analysis (e.g., laboratory analysis) then this may be unreasonable. The thin plate
spline is a particular RBF interpolator but the smoothing spline is not. However incorporating the
variance of the error is easily accomplished ‘in the stochastic formulation, this requires only a
minor change in the equations in (2a’). The smoothing spline is then a special case, see Cressie
(1989, 1990)

6 Non-Uniqueness

If the RBF A(u) in (2) is strictly conditionally positive then the system (2), (3) will always have a
unique solution irrespective of the choice of the /(u) but in general the interpolating function
given in (1) will be different. That is, at non-data points the interpolated values need not be the
same. The error bound given in Madych and Nelson (1988) depends on the choice of A(u).
However the data is not really used in the derivation. There are many empirical studies that
compare choices of h(u) for particular data sets generated from known functions but do not
provide any particular guidance as to how to choose the basis function a priori and when the
function is unknown. There are various ways to “fit” the generalized covariance to the data and
hence attempt to minimize the nonuniqueness. These arise rather naturally in the context of the
stochastic formulation.

Cross-validation. At a non-data point, the error is given by s(x)-V(x) or in standardized form,

[s(x)-V(x)]/ o(x). If the generalized covariance is a “good fit” to the data then all of these errors
should be small. More specifically

should be close to zero because the expected value of each term in the sum is zero. If the entire
data set is used to generate the estimated values this statistic would not be useful. Therefore it is
necessary to “jackknife” the data. That is, the values at data locations are systematically estimated
one at a time using only other data locations. In considering how large a discrepancy (from zero)
is significant it is important to note the scale of the data values. A second statistic is given in
terms of the normalized errors

(/) Zpjer,.np |s05)v2/ S*x)
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The expected value of this statistic is one. Finally one might consider the distribution of the
normalized errors. Using Chebyshev’s Inequality (which does not depend on any distributional
assumptions) s

P{Is(x)-V(X)/ ofx) >k} < 1- 1/k®

Thus ~ 90% or more of the normalized errors should be < 3. Under the stronger assumption of a
multigaussian distribution, more than 95% of the normalized errors should be < 2.5. Particularly
when the data is generated by some phenomenon rather than by a known function it can be useful

. to plot the errors vs location, to construct a histogram of the normalized errors and to plot
estimate vs true value. For a discussion of this in the context of RBF’s, see Myers (1992b). While
there are some similarities with cross-validation as it is sometimes used with the smoothing spline
there are also significant differences. In this case the objective is to evaluate the fit of the
covariance/generalized covariance. With the smoothing spline one is only determining the degree
of difference between an exact interpolator and a smoothed one.

Estimation and Fitting of the Generalized Covariance. There are natural estimators for both
the covariance function and the generalized covariance of order zero (usually called the
variogram). Then the appropriate model should be “close” to the estimated covariance/generalized
covariance. A form of weighted least squares can be used to both estimate parameters and also to
quantify the goodness of fit. See the R packages gstat and geoR.

Maximum Likelihood. Under an assumption of a multigaussian distribution and a covariance
function of general type (but with unknown parameters, e.g., Matérn) the problem reduces to one
of estimating the parameters in the density function including the mean. This method is discussed
in Diggle et al (2003) and implemented in the geoR package for R.

A Non-consequential Non-uniqueness. By definition covariance functions and generalized
covariance functions satisfy h(0) = 0. Although positive definite functions satisfy this,
conditionally positive definite functions need not satisfy this condition.. However if" h(u)
conditionally positive definite @ +h(u) produces the same solution in the systems given by (2a),

(2b) and by (22°)., (2b"). For example, h(u) = - [87 + [u’]"* vs 18] - [87 + |u|/]™ .

7 Linear Functionals

*Obviously “point values” are linear functionals but there are at least two other linear functionals
of interest. ‘

Integrals. Let 4 be a measurable set in R, then the objective is to estimate

(44D [, 760 dx

where f{x) is the unknown (assumed integrable) function. Obviously one solution is to simply
integrate (analytically or numerically) the interpolating function. The problem is that there is no
really good error bound, note that the error bound given by Madych and Nelson (1988) is only
local. In the stochastic formulation the problem appears slightly different. The estimator in (1')
could be used to generate estimates at each point on a fine grid superimposed on A and then use
numerical integration. '

While there will be a minimized estimation variance at each grid point these do not directly
produce an estimation variance for the integral. How ever it is possible to show that the integral
can be estimated directly by using an estimator exactly like eq (1') but eqs (2a”) will be modified,
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namely the term on the right hand side of the equations is replaced by the integral of that function,
i.e.

(114 [ hxx) dx

These integrals might be obtained numerically in the software. It can be shown that in the limit

the numerical integration using estimates on a grid will converge to the direct estimate, Myers *

(1999). The minimized estimation variance can be computed using a slight variation of eq(3).

Derivatives. Essentially the same questions arise with respect to estimation(or interpolation) of
the derivative of the unknown function as arise for integrals. If the basis function is differentiable
then the derivative of the unknown function might be estimated/approximated by differentiating
the interpolating function. This does not result in error bounds for the derivative however. As a
linear functional, the values of the derivative can be estimated using eq(1l") by only slightly
modifying the equations in (2a’), (2b”). Namely it necessary to change the right hand side of the
equations in (2a’) by using the derivative. It can be shown that this is equivalent to differentiating
the interpolating function, this is of course dependent on the differentiability of the basis function.
In some cases data for the derivative is an auxiliary variable as discussed in the next section,
Chilés and Delfiner (1999).

8 The Vector Valued Case

There are many examples where data is available for a second related variable. The relationship
may not be a functional one but rather one of correlation, i.c., statistical dependence. The
stochastic model provides a natural way to incorporate the information contained in the data of
auxiliary variables. As shown in Myers (1992a) each data “value” is a vector, the generalized
covariance becomes a matrix function and the coefficients in (1), (2a), (2b) are matrices. The
diagonal entries in the matrix function are covariances, the off diagonal entries are cross-
covariances and this matrix function must satisfy a matrix version of positive definiteness.
Sometimes the auxiliary variable represents data that is easier or cheaper to obtain and often data
will not be available for all variables at all locations. The software can be written to adapt to this.
The practical problem is a lack of known positive definite (conditionally positive definite) matrix
functions to choose from. For that reason it is common to use what is known as a Linear
Coregionalization Model, which is a generalization of a positive linear combination of known
positive definite functions, Wackernagel (2003).

"9 Simulation

The thin plate spline is obtained by imposing a smoothness condition on the interpolating
function, more generally RBF interpolators are obtained by imposing less obvious conditions on
the interpolating function. In the stochastic formulation, the estimator is essentially an
approximation to the conditional expectation. From the perspective of a random function, there
may be multiple realizations that will satisfy the data. As realizations of that random function they
all exhibit the spatial correlation implied by the covariance/generalized function. Essentially all
interpolation methods “smooth” the data, some more than others. This may not be desirable and in
many applications is realistic, think of interpolating elevation for a mountain range. In hydrology
it is common to interpolate hydraulic conductivity and then use that parameter in a flow model
(stochastic differential equation). It is often important to see how much variation might occur in
the ultimate prediction, e.g. best case vs worst case. Thus one wants to generate multiple “equally
likely” realizations subject to certain constraints; (1) the spatial correlation structure should be
preserved, (2) the marginal distribution should be preserved, i.e., the distribution implicit in the
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data. This is a form of Monte Carlo but it is more complex because of the constraints. Monte
Carlo usually is only constrained by the distribution type. A number of algorithms are in common
use, e.g., Sequential Gaussian, Simulated Annealing (which uses the simulated annealing
optimization algorithm), Cholesky decomposition (of the covariance matrix) are examples. The
Sequential Gaussian algorithm is implemented in geoR package for R.
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